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The equation of state in hardening theory is most simply written [i, 2] as 

p = g(~)l l~), ( 1 )  

where p is the creep strain and ~ is the stress, while the dot denotes differentiation with 
respect to time. 

The applicability of this equation has not finally been established, and there is no 
reasonably general method for determining the hardening function f(p). In practice, f(p) is 
usually determined by selection. 

Here we use a special transformation of the creep curves in a method of determining the 
applicability of (i), and we propose a method of constructing f(p). 

Experiment shows that the following equation applies over a not very wide range in stress 
and creep strain for metals [i, 2]: 

P = g(~)/p=. (2) 

The a p p l i c a t i o n  r a n g e  o f  (2)  i s  f a i r l y  n a r r o w  i n  some c a s e s .  I t  h a s  b e e n  shown [3] t h a t  
t h e  h a # d e n i n g  p a r a m e t e r  ~ i n  (2)  c a n  be  t a k e n  a s  c o n s t a n t  f o r  30KhMA s t e e l  a t  500~ o n l y  f o r  
s m a l l  s t r a i n s .  At l a r g e  c r e e p  s t r a i n s ,  a i s  d e p e n d e n t  on t h e  s t r e s s ,  i . e . ,  t h e r e  i s  a d e v i a -  
t i o n  f rom ( 1 ) .  The same c o n c l u s i o n  was r e a c h e d  i n  [4] f o r  t h e  c r e e p  i n  D-16T a l l o y .  

Over  30 s e r i e s  o f  c r e e p  c u r v e s  f o r  v a r i o u s  m e t a l s  and  a l l o y s  were  e x a m i n e d  i n  [ 5 ] ,  w h i c h  
showed t h a t  i n  m o s t  c a s e s  o n l y  t h e  i n i t i a l  p a r t s  o f  t h e  c u r v e s  can  be  r e p r e s e n t e d  as  s t r a i g h t  
l i n e s  i n  l o g a r i t h m i c  c o o r d i n a t e s ,  and  t h a t  f o r  a s t r e s s  r a n g e  d i s t i n c t  f o r  e a c h  m a t e r i a l .  
F i g u r e  1 shows c r e e p  c u r v e s  f o r  AMg5V a l l o y  w i t h  i n  p and  I n  t a s  a x e s  r e c o r d e d  a t  200~ [ 6 ] .  
The n u m b e r s  on t h e  c u r v e s  a r e  t h e  s t r e s s e s  i n  MPa. The c r e e p  c u r v e s  f o r  t h i s  a l l o y  do n o t  
become straight lines in logarithmic coordinates. Equation (2) cannot be applied to AMg5V 
even if one assumes that a is dependent on o. It is necessary to define a new form for the 
equation, and it is not known whether one can use (i) to describe these experiments and others 
or whether it is necessary to formulate a more complicated model. It is necessary to devise 
methods of determining the applicability range of (i). 

The method proposed here is based on describing the initial parts of the creep curves by 
means of (2) in a certain stress range. 

We represent (i) in the form 

p = g(o)/(p = -- ~)), (3) 

where ~0(p) << p~ at small p. 

An individual creep curve can be described by (3) with any accuracy, by taking for 
example ~(p) as a polynomial. The question is whether (3) enables one to describe a series 

of creep curves over sufficiently wide ranges in stress and strain. 

We integrate (3) with ~ = oo = const 

p~+1 (4) 
~p (p) dp -~ - -  g (%)  t .  

o 

We put 

.f ~ (p) dp - -  �9 (p). 
0 
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If (3) applies (can describe the given series of creep curves), then the function 

pe+l 
* (P ) - -~+ i  g(%)t (5) 

should represent a single curve for different values of Oo and t. Here the stress Oo and 
time t appears as parameters. In the particular case where ~(p) ~ 0, we obtain the power 
law of (2). 

To construct the ~--p relationship from (5), it is first necessary to find g(o), which 
can be determined by standard methods [i, 7, 8] by putting ~(p) = 0 in (4). 

Figure 2 shows the function of (5) for steel 30KhMA (~) and AMg5V alloy (~2). The 
experimental points correspond to individual creep curves. Figure 2 shows that the calcu- 
lated values group around a single curve. 

Similar constructions were performed for the above 30 series of creep curves [5]. In 
all cases, the values lie around a single curve in ~-p axes, which indicates that (i) has a 
fairly wide range of application. 

To determine f(p), it is first necessary to find ~(p), i.e., by numerical differentiation 
of ~(p). One can first approximate ~(p) with a suitable function and then differentiate it 
to find ~(p). When f(p) = p~ -- ~(p) has been determined (the graph has been constructed), 
it can be approximated as a simpler function. 

In many cases, good results are given by 

l ~ )  = Lh~at '. ( 6 )  

For small p, the function of (6) degenerates into a power law, and (I) takes the form 
of (2). For p * ~, the function of (6) tends to one. Therefore, at sufficiently large 
creep strain, the strain rate p is determined only by the stress: 

p = gW). 
(7) 
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Therefore, (i) with the hardening function of (6) describes the first and second creep 
stages. 

If the creep curve has a pronounced second part, (7) enables one to derive g(o). 

The curves for AMg5V alloy and 30KhMA steel showed that one can take ~ = 1 for these 
materials. 

In that case, the solution to (i) takes the form 

I t,~Tarche "~(%)t. (8) 

The points in Pig. 1 denote the values calculated from (8) (a = 180, g(o) = 3.64-10 -9 o5)i 
Fig. 3 (solid lines) shows the creep curves for 30KhMA steel [3], while the dot-dash lines 
show the calculated values (5 = 166.67, g(g) = 2.408"10 -3 exp (~/29.4~). It is evident from 
Figs. 1 and 3 that there is good agreement between the calculated and experimental values. 

The solid lines in Fig. 4 show the creep curves for chromium-nickel-molybdenum steel at 
450~ where there is a pronounced second part [2]. The dot-dash lines show the calculated 
curves (a = 3, a = 2400, g(o) = 8.14"10 -16 o3"334). It is evident from Fig. 4 that in this 
case (I) with the hardening function of (6) gives a satisfactory description of the creep 
curves. 

The above studies show that (i) has a fairly wide range. The agreement between the 
calculated values and experiment will be dependent on the accuracy in approximating the 
hardening function graph by the above method. 
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